

pinout

SVG diagram creation from Python code - pinout provides an easy method to create pin-out diagrams for electronic hardware.

[image: _images/demo_pinout_diagram.png]

Contents:

	Install and Quickstart
	Install

	Quickstart

	Tutorial
	Import modules

	Diagram setup

	Hardware image

	Measuring up

	Add a single pin-label

	Add Multiple pin-labels

	Pin-label orientation

	Title block

	Legend

	Export the diagram

	Next steps

	KiCad integration
	Before you start

	Create a KiCad footprint Library

	Add an origin

	Add pin-labels

	Add an annotation

	Add a textblock

	Import KiCad data

	Template layout

	Link an image

	Add labels and Annotations

	Access text from KiCad

	Export a diagram

	Modules
	Manager

	Config

	Core

	Layout

	Pin Labels

	Leaderlines

	Annotations

	Legend

	Text

	Integrated circuits

	Customisation
	Stylesheet

	Component config

	Building components

	Resources

Indices and tables

	Index

	Module Index

	Search Page

Install and Quickstart

Install

Using a virtual environment is recommended; Start by installing the pinout package from PyPi:

pip install pinout

Or upgrade to the latest version
pip install --upgrade pinout

pinout exports diagrams in SVG format and can be used with with no further package installations. With the additional installation of CairoSVG, diagrams can also be exported in PNG, PDF, and PS formats:

pip install cairosvg

Warning

CairoSVG has non-Python dependencies that will require installing if not present. Installation varies depending on platform and may feel like quite a journey for non-technical users. Information regarding installation requirements can be found in the CairoSVG [https://cairosvg.org/documentation/] and Cairo Graphics Library [https://www.cairographics.org/download/] websites.

For Windows users installing GTK3 via MSYS2 [https://www.gtk.org/docs/installations/windows/] may be the most reliable method to install all requirements (Don’t forget to add the correct GTK bin folder to the system PATH environmental variable!)

Quickstart

[image: ../_images/quick_start_pinout_diagram.png]
This guide makes use of a hardware image, stylesheet, data file, and a Python script. Sample files are included with the package and can be duplicated for your use. Open a command line (with enabled virtual environment if you are using one) in the location you plan to work and enter the following

Note

Depending on your operating system the command to invoke Python may differ. This guide uses Windows default method. Exchanging ‘py’ for ‘python’ or similar may be required for examples to work on other systems.

py -m pinout.manager --duplicate quick_start

expected output:
>>> data.py duplicated.
>>> hardware.png duplicated.
>>> pinout_diagram.py duplicated.
>>> styles.css duplicated.

Generating the final SVG graphic is done from the command line:

py -m pinout.manager --export pinout_diagram.py diagram.svg

If everything is correctly configured the newly created file ‘diagram.svg’ can be viewed in a browser and should look identical to the diagram pictured here.

Warning

Not all SVG viewers are build equal!
pinout uses SVG format ‘under-the-hood’ and can also output diagrams in this format. SVG is well supported by modern browsers and applications that specialize in rendering SVG such as InkScape. If a pinout diagram displays unexpected results (eg. mis-aligned text) cross-check by viewing the diagram in an up-to-date browser (eg. Firefox or Chrome) as an initial trouble-shooting step.

Once you have installed the pinout package explore its main features in the Tutorial.

Tutorial

This tutorial walks through the main features available in pinout. If you have not installed pinout already please read the Install and Quickstart section. This tutorial duplicates code from pinout_diagram.py. To access a copy of this file and other resources required to complete this tutorial see Quickstart.

[image: ../_images/quick_start_pinout_diagram.png]

The finished diagram from this tutorial.

Import modules

Start by importing pinout modules required to create the sample diagram. For this tutorial the diagram data has been stored in a separate file which is also imported here:

from pinout.core import Group, Image
from pinout.components.layout import Diagram_2Rows
from pinout.components.pinlabel import PinLabelGroup, PinLabel
from pinout.components.text import TextBlock
from pinout.components import leaderline as lline
from pinout.components.legend import Legend

Import data for the diagram
import data

Diagram setup

The Diagram_2Rows class creates a blank diagram instance featuring two panels to hold further components and make up the pinout diagram. The instance is named ‘diagram’ here as this is the default instance name pinout.manager looks for when exporting the final graphic. Presentation styles are controlled via a cascading style-sheet, also added to the diagram here:

Create a new diagram
The Diagram_2Rows class provides 2 panels,
'panel_01' and 'panel_02', to insert components into.
diagram = Diagram_2Rows(1024, 576, 440, "diagram")

Add a stylesheet
diagram.add_stylesheet("styles.css", embed=True)

Components can be grouped independently from a panel. This aids with fine-tuning of a layout as a group of components can be moved as a single unit:

Create a group to hold the actual diagram components.
graphic = diagram.panel_01.add(Group(400, 42))

Hardware image

An image that requires pinout information is obviously required and added with the Image class. Width and height arguments are optional. If omitted the pixel dimensions are automatically detected and used. ‘x’ and ‘y’ attributes can also be supplied to position the top-left of the image to more suitable coordinates:

Add and embed an image
hardware = graphic.add(Image("hardware.png", embed=True))

Measuring up

Key coordinates on the image need to be documented for related components to align correctly. It is a good idea to undertake measuring as a distinct step and usually quicker than estimating with trial-and-error later on. Measurements are pixel dimensions from the top, left corner (with an exception - see following note on ‘pin pitch’) :

[image: ../_images/quick_start_measurements_pins.png]

These coordinates could be used ‘as is’ later on but recording them with the Image class provides a clear association plus coordinates are transformed automatically to remain correctly positioned if the image’s x, y, width, or height are adjusted:

Measure and record key location with the hardware Image instance
hardware.add_coord("gpio0", 16, 100)
hardware.add_coord("gpio3", 65, 244)
hardware.add_coord("reset", 155, 244)
hardware.add_coord("vcc", 206, 100)
Other (x,y) pairs can also be stored here
hardware.add_coord("pin_pitch_v", 0, 30)
hardware.add_coord("pin_pitch_h", 30, 0)

Note

Arbitary (x,y) data can also be recorded with the image. The pin-header pitch has been recorded in this manner. Transformed values can then be automatically calculated if the image’s width or height are altered.

pinout provides great flexibility when positioning pin-labels. Key details to note:

	‘x’ and ‘y’ values are relative to hardware coordinates.

	label_pitch is an (x,y) offset between each pin-label in a PinLabelGroup

	scale is used to ‘flip’ labels. Negative values may yield unexpected results

	‘x’ and ‘y’ positions the entire label or row component, including a leaderline. A pin-label’s body can be positioned in addition to the component positioning.

[image: ../_images/quick_start_measurements_labels.png]

Add a single pin-label

In some instances adding pins individually might be appropriate. This pin is being added to the ‘graphic’ group - the same component that the image is in - and references coordinates filed with the image. Also demonstrated on this pin are some customisations of the pin-label’s body and leaderline:

Create a single pin label
graphic.add(
 PinLabel(
 content="RESET",
 x=hardware.coord("reset").x,
 y=hardware.coord("reset").y,
 tag="pwr",
 body={"x": 117, "y": 30},
 leaderline={"direction": "vh"},
)
)

Add Multiple pin-labels

Where pins are arranged in ‘headers’ (a line of evenly spaced pins) the PinLabelGroup class can be used to automate many of the geometry calculations required to place individual pin-labels.

	x, y: Coordinates of the first pin in the header.

	pin_pitch: Distance between each pin of the header. (0, 30) steps 0px right and 30px down for each pin. TIP: (30, 0) creates a horizontal header.

	label_start: Offset of the first label from the first pin, note that negative x values here may produce unexpected results. pin-label groups should be flipped with scale instead (more explaination later).

	label_pitch: Distance between each row of labels.

	labels: Label data. See data.py for examples

Create pinlabels on the right header
graphic.add(
 PinLabelGroup(
 x=hardware.coord("vcc").x,
 y=hardware.coord("vcc").y,
 pin_pitch=(0, 30),
 label_start=(60, 0),
 label_pitch=(0, 0),
 labels=data.right_header,
)
)

Pin-label orientation

[image: ../_images/quick_start_measurements_scale.png]

SVG format allows ‘flipping’ or ‘mirroring’ elements by scaling them with a negative value eg. scale=(-1, 1) flips a component around a vertical axis. _pinout_ makes use of this feature, a scale attribute can be supplied to components to flip their layout. This can take some getting use to but provides a concise method of control. The following pin-label groups are scaled to orient in the opposite direction.

Create pinlabels on the left header
graphic.add(
 PinLabelGroup(
 x=hardware.coord("gpio0").x,
 y=hardware.coord("gpio0").y,
 pin_pitch=(0, 30),
 label_start=(60, 0),
 label_pitch=(0, 0),
 scale=(-1, 1),
 labels=data.left_header,
)
)

Create pinlabels on the lower header
graphic.add(
 PinLabelGroup(
 x=hardware.coord("gpio3").x,
 y=hardware.coord("gpio3").y,
 scale=(-1, 1),
 pin_pitch=(30, 0),
 label_start=(110, 30),
 label_pitch=(30, 30),
 labels=data.lower_header,
 leaderline=lline.Curved(direction="vh"),
)
)

Title block

Adding a title and supporting notes can help readers quickly place a diagram in context and summarise important points:

Create a title and a text-block
title_block = diagram.panel_02.add(
 TextBlock(
 data.title,
 x=20,
 y=30,
 line_height=18,
 tag="panel title_block",
)
)
diagram.panel_02.add(
 TextBlock(
 data.description.split("\n"),
 x=20,
 y=60,
 width=title_block.width,
 height=diagram.panel_02.height - title_block.height,
 line_height=18,
 tag="panel text_block",
)
)

Legend

Adding a legend is easy as a dedicated component exists in _pinout_. The component flows into multiple columns if a ‘max_height’ is supplied:

Create a legend
legend = diagram.panel_02.add(
 Legend(
 data.legend,
 x=340,
 y=8,
 max_height=132,
)
)

Export the diagram

With all the required files present, the diagram can be exported via command-line:

py -m pinout.manager --export pinout_diagram.py diagram.svg

expected output:
> 'diagram.svg' exported successfully.

The exported file is SVG format. When viewed in a web browser it should match the finished diagram shown here. This format is excellent for high quality printing but still an effecient size for web-based usage.

[image: ../_images/quick_start_pinout_diagram.png]

The finished diagram from this tutorial.

Next steps

This guide has glossed over many features, attribute, and configurations available. Experimenting with changing values and re-exporting the diagram will quickly reveal their purpose. All function are documented in the Modules section.

Depending on you intended usage, linking (instead of embedding) the image might be desirable. Set embed=False when adding an image to achieve this outcome. Note: When linking, URLs are relative to the exported diagram file. When embedding these URLs are relative to the current working directory (the directory you run the script from).

TIP: Embedding the image and stylesheet allows the SVG display correctly in InkScape. This might be an appealing work-flow option for encorporating the diagram into other media or exporting in alternative formats.

More feature-rich examples are available in the samples folder of the pinout github repository [https://github.com/j0ono0/pinout].

KiCad integration

pinout provides integration with KiCad (version 5 and 6) allowing users to author pinout content directly onto a PCB design. This allows a better separation of layout and content where KiCad can become a single content source for a diagram template.

[image: ../_images/kicad_screenshot.png]

Before you start

Create or obtain (see following note) a KiCad project! This project must include a PCB design which will be enhanced with additional pinout information.

Ensure pinout is installed. For more information regarding this step please refer to Install and quickstart

Optionally, duplicate the pinout config file. Some KiCad library settings can be customised from this file - Most usefully, the layer that library footprints appear on can be changed:

py -m pinout.manager -d config

Note

Sample files that demonstrate KiCad (version 6) integration are included with pinout. Once duplicated and unzipped, running the python script will export an example diagram:

Duplicate zipped folder with KiCad 6 project and pinout files
py -m pinout.manager -d kicad

Expected output:
>>> pinout_kicad_example.zip duplicated.

Export pinout diagram from unzipped folder
>>> py -m pinout.manager -e pinout_diagram.py diagram.svg -o

Expected output:
>>> 'diagram.svg' exported successfully.

Create a KiCad footprint Library

pinout generates its KiCad footprint library from the command line py -m pinout.manager <destination folder> <config file> --version <kicad version>. ‘config file’ and ‘version’ are optional. If omitted the version defaults to ‘6’ and default config settings are used:

#Example: KiCad 6, saving into the current directory
py -m pinout.manager --kicad_lib .

#Example: KiCad 6, saving into the current directory and referencing a config file
py -m pinout.manager --kicad_lib . config.py

#Example: KiCad 5, saving into the relative directory named 'lib'
py -m pinout.manager --kicad_lib ./lib -v 5

Expected output:
>>> pinout footprint library for KiCad created successfully.

A folder named pinout.pretty will now be present at the location referenced in the command. This folder can be added as a footprint library in your KiCad project.

Note

KiCad 6: Footprints are on User.1 layer by default.

KiCad 5: Footprints are on Eco1.User layer by default.

Warning

KiCad 6 allows users to assign an alias to layer names. Only use KiCad’s default layer names when generating a pinout library.

The pinout footprints can now be added to KiCad like any other footprint library and added to an existing design in the PCB Editor.

Add an origin

The hardware image used in a diagram must be aligned to KiCad’s coordinate system for pinout to successfully align components. This can be done by placing an Origin footprint at a corrosponding location in KiCad. The origin footprint marks where an image’s top-left corner will be positioned.

Add pin-labels

	Select the PinLabel footprint from the Choose Footprint dialogue.

	Place the footprint at the pin location

	Move the Value text to the desired label location

	Edit the text value to reflect label content and styling.

Multiple labels can be documented for a single pin by adding additional text {{tag}} pairs to the Value field. For example this become a row of three labels:

GPIO1 {{gpio}} ADC {{analog}} TOUCH {{touch}}

By editing the footprint two more fields, that are hidden by default, can be viewed and edited. The Reference designator documents the footprints purpose and can be altered without affecting pinout’s functions. The additional field is used to document pin-label attributes.

Currently only the pin-label leaderline attribute is supported. It can be changed to suit the desired layout and reflects start/end leaderline directions. Valid values are:

	hh: horizontal - horizontal

	vh: vertical - horizontal

Add an annotation

Annotations can be added by the same method as pin-labels.
1. Select the Annotation footprint from the Choose Footprint dialogue.
2. Place the footprint at the location to be annotated
3. Move the Value text to the desired label location
4. Edit the text value to reflect label content and styling.

Tagging the annotation is done with the same ‘moustache’ style tag {{tag}}. The tag text is applied to the final annotation as a css class. Further styling can then be applied via the CSS stylesheet.

By editing the annotation footprint other fields can be accessed and altered - with the same features and limitations - as the PinLabel footprint.

Add a textblock

A diagram is likely to require text content that is independent from the pinout diagram itself - for instance titles and explainatory notes. To assist with this pinout provides the facility to import ‘Text items’ from KiCad.

KiCad’s Text item tool is the ideal interface to authoring blocks of text. This tool cannot be used within a footprint but pinout collates all Text items that include a moustache-style tag in them. A dictionary is then returned for use within a pinout script. For example:

import kicad pcb data into pinout
kdata = k2p.PinoutParser("kicad6_test.kicad_pcb", dpi=72)

Retrieve 'Text item' content from KiCad as a dictionary
text = kdata.gr_text()

Use Text item content to populate a TextBlock
diagram.add(TextBlock(text["txt_tag_01"], tag="txt_tag_01", x=20, y=30))

Import KiCad data

With pinout content documented in KiCad it can now be imported into a pinout Python script. The following code snippets are directly from the sample files mentioned at the start of this article. Code for an entire working sample will be duplicated here but descriptions will focus on relevant aspects only.

Both Kicad versions 5 and 6 use the same module. With the module imported a link to the kicad_pcb file can be established:

from pinout.core import Group, Image
from pinout.components.layout import Diagram_2Rows
from pinout.components.text import TextBlock
from pinout import kicad2pinout as k2p

Import KiCad data
kdata = k2p.PinoutParser("kicad_6_pcb/kicad_6_pcb.kicad_pcb", dpi=72, version=6)

Template layout

Whilst labelling can be done in KiCad the overall diagram layout must still be addressed. See the Tutorial for more details on this:

Create diagram layout
diagram = Diagram_2Rows(900, 575, 500, tag="diagram")
diagram.add_stylesheet("styles.css")

Using a 'group' component for easy alignment of all sub-components
graphic = diagram.panel_01.add(Group(300, 65))

Add an image that corrosponds to the KiCad PCB.
img = graphic.add(Image(src="pcb_graphic.svg", width=300, height=300))

Link an image

Coordinate data from KiCad must be transformed and aligned with the supplied image. This not only translates coordinates to align with the origin footprint but also scales and rotates to remain aligned with an image that has been transformed in pinout:

KiCad coordinates will be transformed to match the linked image.
kdata.link_image(img)

Add labels and Annotations

With KiCad data successfully imported and associated with the image it will enhance, adding pin-labels and annotations is easy:

 # Add pin-labels and annotations to the 'graphic' group
kdata.add_pinlabels(graphic)
kdata.add_annotations(graphic)

Access text from KiCad

To better separate content and layout pinout can also import text content from KiCad. pinout scripts can become reuable templates with minimal changes. All text-items that include a ‘moustache’ style tag are collated into a dict for access in the script. In this example text is used to fill a title block:

Text from KiCad can be accessed as a dict
textblocks = kdata.gr_text()
diagram.panel_02.add(TextBlock(textblocks["pinout_title"], x=20, y=30))

Export a diagram

The diagram can now be exported in the normal way. For the example script this should go smoothly with predictable results. For other kicad file that include more/different label and tags a revised CSS file needs to be created. pinout can provide a reasonable starting point with its auto-styling feature. Don’t forget to update ‘add_stylesheet’ in the script!

OPTIONAL EXTRA: Auto generate styles
>>> py -m pinout.manager --css pinout_diagram.py autostyles.css -o

Export diagram as SVG:
>>> py -m pinout.manager -e pinout_diagram.py diagram.svg -o

[image: ../_images/kicad_export.png]

Modules

Contents:

	Manager
	Duplicate quick_start files

	Export an SVG diagram

	Export in other formats

	Generate a cascading stylesheet

	Config
	Default values

	Instance attributes

	Core
	Layout

	StyleSheet

	Raw

	Group

	ClipPath

	SvgShape

	Path

	Text

	Image

	Layout
	Diagram

	Panel

	Pin Labels
	Base

	PinLabel

	Body

	Leaderline

	PinLabelGroup

	Leaderlines
	Leaderline

	Curved

	Angled

	Straight

	Annotations
	Annotation

	Body

	Content

	Leaderline

	Target

	Legend
	Legend

	Swatch

	Entry

	Text
	TextBlock

	Integrated circuits
	Labelled QFP graphic

	Labelled DIP graphic

	Dual in-line package (DIP)

	Quad flat package (QFP)

Manager

The manager module provides various functions to assist pinout create diagrams. For users, Manager is primarily accessed via the command-line for the following.

Duplicate quick_start files

A fast way to get started exploring pinout is by trying out the quick_start diagram that is featured in the tutorial. Required files can be duplicated from the pinout package via command line:

py -m pinout.manager --duplicate quick_start

expected output:
>>> data.py duplicated.
>>> hardware.png duplicated.
>>> pinout_diagram.py duplicated.
>>> styles.css duplicated.

-d works as a short-hand version of –duplicate

Export an SVG diagram

Once a diagram has been documented it can be exported to SVG format via the command-line. Two arguments must be supplied. A path to the diagram python script and destination path including filename:

>>> py pinout.manager --export pinout_diagram.py my_diagram.svg

expected response:
'my_diagram.svg' exported successfully.

Example where pinout.Diagram instance is named 'board_x_diagram'
>>> py pinout.manager --export pinout_diagram.py my_diagram.svg board_x_diagram

Details to note:

	–export can be expressed as a single letter -e

	An –overwrite (-o) can also be included to overwrite an existing file

	if the instance name is not ‘diagram’ the alternative name can be added as as third argument

Export in other formats

With the addition of CairoSVG pinout is able to export to PNG, PDF, and PS formats. Installation is done via pip:

pip install cairosvg

Note

CairoSVG has it’s own (non-Python) dependencies. See Install and Quickstart for more details.

Once these dependencies have been installed replace the filename suffix to export in the desired format:

Export as png
>>> py pinout.manager --export pinout_diagram.py my_diagram.png

Export as pdf
>>> py pinout.manager --export pinout_diagram.py my_diagram.pdf

Export as ps
>>> py pinout.manager --export pinout_diagram.py my_diagram.ps

Generate a cascading stylesheet

Provided with a diagram file, the manager can extract components and tags, then export a stylesheet based on this data to assist with styling. The resulting stylesheet can then be further edited or a second stylesheet created to supplement the default styles:

>>> py pinout.manager --css pinout_diagram.py diagram_styles.css

expected response:
Stylesheet created: 'diagram_styles.css'

As with exporting an SVG, the -o flag can be used to overwrite and existing file. Note, there is no short-hand for the -css flag.

Config

Components with a graphical representation have a variety of configuration attributes that affect their appearance. These attributes can be modified at several location whilst scripting.

Default values

These attributes are stored as Python dictionaries in the config module.

A complete set of all default configurations can be duplicated for reference from the command line:

py -m pinout.manager --duplicate config

expected response:
>>> config.py duplicated.

Amending the default configurations can be done by replacing or updating any of the dictionaries with plain Python:

from pinout import config
config.pinlabel["body"].update({"width": 120})

All pin-label bodies will now default to 120 wide

Instance attributes

PinLabels and Annotations accept a dictionary of configurations for some attributes. These values are used to update the default settings for that single instance. This is ideal when small alterations are required for a low number items:

from pinout.core import Diagram
from pinout.components.pinlabel import PinLabel

diagram = Diagram(1200, 675, "pinout")
diagram.add(
 PinLabel(
 x=30,
 y=30,
 tag="sm-label",
 body={"width": 40},
)
)

Core

Layout

	
class pinout.core.Layout(x=0, y=0, children=None, **kwargs)

	Bases: pinout.core.Component, pinout.core.TransformMixin

Base class fundamentally grouping other components together.

This class is not designed to be used directly. Methods listed here are inherted by child classes and accessible via them.

	Parameters

	
	x (int, optional) – x-axis location, defaults to 0

	y (int, optional) – y-axis location, defaults to 0

	tag (string (must be valid css class name), optional) – css class tag, defaults to None

	
render_children()

	Render SVG markup from ‘children’

	Returns

	SVG markup

	Return type

	string

StyleSheet

	
class pinout.core.StyleSheet(src, embed=False)

	Bases: object

Include a cascading stylesheet.

This class should be added to a diagram via Diagram.add_stylesheet(). Relative paths are relative to the Python script, not the export destination. On export, if the path is relative, it is updated automatically to reflect the destination directory. On export, embedded stylesheets are copied into a <style> tag in the SVG output file.

	Parameters

	
	path (string) – Path to stylesheet file

	embed (bool, optional) – Embed stylesheet in exported file, defaults to False

	
render()

	

Raw

	
class pinout.core.Raw(content)

	Bases: object

Include arbitary code to the document

	Parameters

	content (string) – SVG code

Group

	
class pinout.core.Group(x=0, y=0, tag=None, **kwargs)

	Bases: pinout.core.Layout

Group components together

	Parameters

	
	x (int, optional) – Coordinate of top-left point in x-axis, defaults to 0

	y (int, optional) – Coordinate of top-left point in y-axis, defaults to 0

	tag (string (must meet css class naming rules), optional) – CSS class, defaults to None

ClipPath

	
class pinout.core.ClipPath(children=None, **kwargs)

	Bases: pinout.core.Group

Define a clip-path component

Once defined the clip-path can be appled to other components by referencing its uuid.

	Parameters

	
	x (int, optional) – Coordinate of top-left point in x-axis, defaults to 0

	y (int, optional) – Coordinate of top-left point in y-axis, defaults to 0

	tag (string (must meet css class naming rules), optional) – CSS class, defaults to None

..automethod:: ClipPath.render

	return

	SVG markup

	rtype

	string

SvgShape

	
class pinout.core.SvgShape(x=0, y=0, width=0, height=0, **kwargs)

	Bases: pinout.core.Component, pinout.core.TransformMixin

Base class for components that have a graphical representation.

Classes that inherit from SvgShape can be considered the smallest building blocks of pinout. Along with text components, SvgShape classes represent the actual graphical elements that make up a diagram.

This class has no renderable output itself. Classes that inherit from it must provide their own unique render method. Whist its purpose is primarily as a building block for other classes, SvgShape can be used to reserve an area in components that don’t intrinsically have their own width and height (eg Group):

from pinout.core import Group, SvgShape

Create an empty group
grp = diagram.add(Group())
print(f"group dimensions - width:{grp.width}, height:{grp.height}")

output:
>>> group dimensions - width:0, height:0

Add an SvgShape instance to the group
grp.add(SvgShape(x=0, y=0, width=50, height=50))
print(f"group dimensions - width:{grp.width}, height:{grp.height}")

output:
>>> group dimensions - width:50.0, height:50.0

The group now reports a size but does not render anything

	Parameters

	
	x (int, optional) – Location coordinate in x-axis, defaults to 0

	y (int, optional) – Location coordinate in y-axis, defaults to 0

	width (int, optional) – Width of the component, defaults to 0

	height (int, optional) – Height of the component, defaults to 0

	tag (string (must meet css class naming rules), optional) – CSS class, defaults to None

	
bounding_coords()

	Coordinates representing a shape’s bounding-box.

Coordinates are relative to the parent component’s origin adn cater for scale and rotation transformations.

	Returns

	(x1, y1, x2, y2)

	Return type

	namedtuple (BoundingCoords)

	
bounding_rect()

	Component’s origin coordinates and dimensions

Convenience method that expresses SvgShape.bounding_coords() as coordinates of the shape’s origin, width, and height.

	Returns

	(x, y, w, h)

	Return type

	namedtuple (BoundingRect)

Path

	
class pinout.core.Path(path_definition='', **kwargs)

	SVG Path object

	param path_definition

	Path definition, defaults to “”

	type path_definition

	str, optional

	
class pinout.core.Rect(*args, corner_radius=0, **kwargs)

	Bases: pinout.core.SvgShape

SVG <rect> object

	Parameters

	corner_radius (int, optional) – Round rectangle corners, defaults to 0

Text

	
class pinout.core.Text(content, **kwargs)

	Bases: pinout.core.SvgShape

SVG <text> object

	Parameters

	content (string) – Text to be included in the tag

Image

	
class pinout.core.Image(src, dpi=72, embed=False, **kwargs)

	Bases: pinout.core.SvgShape

Include an image in the diagram.

Valid bitmap formats are PNG and JPG - matching the SVG specifications. SVG images can be added via this Image class however they must provided at 1:1 dimensions and include their own dimensions in the <svg> tag. Additional care needs to be taken when incorporating SVG files as it is possible for CSS classes to clash.

Image size can be controlled by supplying a width and height property. Omiting one, or both, properties results in the supplied image’s pixel dimensions to be used.

Where supplied dimensions differ to the image’s pixel dimensions the image is scaled proportionally, and centred, to fit supplied dimensions.

Image instances can be added to any component that inherits from the Layout class:

from pinout.components.layout import Diagram
from pinout.core import Image

diagram = Diagram(800,400)

Add an image to the diagram at coordinates (20,20)
diagram.add(Image("hardware.png", x=20, y=20))

If an image is to be used multiple times in a single diagram a single instance should be included into the diagram’s ‘defs’ and referenced from there:

from pinout.components.layout import Diagram
from pinout.core import Image

diagram = Diagram(800,400)

Add an image into the diagram's 'defs'
img_src = diagram.add_def(Image("hardware.png"))

Create x2 new image instances both referencing 'img_src'
img_01 = diagram.add(Image(img_src, x=20, y=20))
img_02 = diagram.add(Image(img_src, x=400, y=20))

	Parameters

	
	path (string) – Path to either an image file on the local file system or a URL. If using a relative path it is relative to the pinout script location.

	embed (bool, optional) – Embed image in exported file, defaults to False

Coordinates stored in an Image instance can be retrieved with Image.coord(<coord_name>). On retrieval, coordinates are transformed to remain in the correct relative location on image instance regardless of the image’s position, width, height, and rotation, for example:

from pinout.components.layout import Diagram
from pinout.core import Image

diagram = Diagram(800,400)

Create an Image instance 'img'
Parameters match desired output and may
differ from the image's actual dimensions
img = diagram.add(Image(
 "hardware.png",
 x=50,
 y=10,
 width=100,
 height=200,
 rotate=30
))

Add a coordinate to 'img'
This coordinate is measured against the original image at 1:1 scale
img.add_coord("pin_a", 110, 150)

The transformed coordinate aligns correctly on the transformed image
pin_a = img.coord("pin_a")

By default returned coordinates include any offset that occurs when non-proportional width and height are set. By setting raw=True the coordinates are scaled purely on actual size vs. user nominated size. This is useful for documenting pin_pitch.

	Parameters

	
	name (string) – Name of coordinate

	raw (bool, optional) – Return a scaled values without image offset, defaults to False

	Returns

	Coordinates scaled to match image scaling

	Return type

	tuple (x, y)

Layout

Diagram

	
class pinout.components.layout.Diagram(width, height, tag=None, **kwargs)

	Bases: pinout.core.Layout

Basis of a pinout diagram

	Parameters

	
	width (int) – width of diagram

	height (int) – height of diagram

	tag (string (must comply to CSS naming rules), optional) – CSS class applied to diagram, defaults to None

	
add_stylesheet(path, embed=False)

	Add a stylesheet to the diagram

Pinout relies on cascading-style-sheet (CSS) rules to control presentation attributes of components.

The path attribute is dependent on whether the styles are linked or embedded. When linked, the path is relative to the exported file. When embedded the path is relative to the diagram script file.

	Parameters

	
	path (string) – Path to stylesheet file

	embed (bool, optional) – embed stylesheet in exported file, defaults to True

	
render()

	Render children into an <svg> tag.

	Returns

	SVG markup

	Return type

	string

Panel

	
class pinout.components.layout.Panel(width, height, inset=None, **kwargs)

	Bases: pinout.core.Layout

The basic building block to control layout (grouping and location) of components that make up a complete diagram document. The Panel component renders two rectangles - and outer and inner rectangle - behind all child components to assist with graphical styling.

The inset attribute controls dimensions of the ‘inner rectangle’. All children are aligned relative to the inset coordinate (x1, y1).

The inner dimensions can be accessed via the properties Panel.inset_width and Panel.inset_height.

	Parameters

	
	width (int) – Width of component

	height (int) – Height of component

	inset (Tuple (x1, y1, x2, y2), optional) – Inset of inner dimensions, defaults to None

Pin Labels

Base

	
class pinout.components.pinlabel.Base(content='', x=0, y=0, tag=None, body=None, leaderline=None, **kwargs)

	Bases: pinout.core.Group

Label component designed specifically for labelling pins.

	Parameters

	
	content (str, optional) – Text displayed in label, defaults to “”

	x (int, optional) – position of label on x-axis , defaults to 0

	y (int, optional) – position of label on y-axis, defaults to 0

	tag (str (CSS name compliant), optional) – categorise the label - applied as a CSS class, defaults to None

	body (dict or pinlabel.Body instance, optional) – replace or configure the default body component, defaults to None

	leaderline (dict or pinlabel.Leaderline, optional) – replace or configure the default leaderline component, defaults to None

PinLabel

	
class pinout.components.pinlabel.PinLabel(content='', x=0, y=0, tag=None, body=None, leaderline=None, **kwargs)

	Bases: pinout.components.pinlabel.Base

See Base for details of this component.

Body

	
class pinout.components.pinlabel.Body(x, y, width, height, corner_radius=0, **kwargs)

	Bases: pinout.core.SvgShape

Graphical shape that makes up the body of a pinlabel.

	Parameters

	
	x (int) – position of label on x-axis

	y (int) – position of label on y-axis

	width (int) – Width of label body

	height (int) – Height of label body

	corner_radius (int, optional) – Corner radius of label body, defaults to 0

Leaderline

	
class pinout.components.pinlabel.Leaderline(direction='hh', **kwargs)

	Bases: pinout.components.leaderline.Curved

Graphical line joining the label origin coordinates to the label body.

	Parameters

	lline (dict of leaderline attributes or replacement Leaderline instance) – Override configuration or replace the pinlabel’s leaderline.

PinLabelGroup

	
class pinout.components.pinlabel.PinLabelGroup(x, y, pin_pitch, label_start, label_pitch, labels, leaderline=None, body=None, **kwargs)

	Bases: pinout.core.Group

Convenience class to place multiple rows of pin-labels on a pin-header.

This is the recommended method of adding pin labels to a diagram. Locate the PinLabelSet by setting x and y attributes.

Pitch is the distance, in pixels, between each pin of the header. (0, 30) steps 0px right and 30px down for each pin. (30, 0) creates a horizontal header. (-30, 0) creates a horizontal header in the reverse direction. This can be useful for ‘stacking’ rows in reversed order to avoid leader-lines overlapping.

	Parameters

	
	x (int) – x-coordinate of the first pin in the header

	y (int) – y-coordinate of the first pin in the header

	pin_pitch (tuple: (x,y)) – Distance between pins in the header

	label_start (tuple: (x,y)) – Offset of the first label from the first pin

	label_pitch (tuple: (x,y)) – Distance between each row of labels

	labels (List) – Label data

	leaderline (dict or Leaderline object, optional) – Leaderline customisations, defaults to None

	body (dict or LabelBody object, optional) – Label body customisations, defaults to None

Leaderlines

Leaderline

	
class pinout.components.leaderline.Leaderline(direction='hh', **kwargs)

	Bases: pinout.core.Path

Leaderline base object.

	Parameters

	direction (str, optional) – 2 letter code, defaults to “hh”

The leaderline connects an origin and destination point. Route taken is controlled with a direction argument where the first character dictates the start direction and the second character the end direction:

	vh: vertical , horizontal

	hv: horizontal , vertical

	hh: horizontal , horizontal

	vv: vertical , vertical

	
end_points(origin, destination)

	Locate origin and destination coordinates.

The end_point method takes two components as arguments and returns coordinates that are aligned with the centre coordinates of the relevant side.

	Parameters

	
	origin (component with width and height attributes and bounding_coords method) – origin component

	destination (component with width and height attributes and bounding_coords method) – destination component

	Returns

	coordinates of start and end points

	Return type

	Tuple ((ox, oy), (dx, dy))

Curved

	
class pinout.components.leaderline.Curved(direction='hh', **kwargs)

	Bases: pinout.components.leaderline.Leaderline

Leaderline comprised of one or two curved corners.

Angled

	
class pinout.components.leaderline.Angled(direction='hh', **kwargs)

	Bases: pinout.components.leaderline.Leaderline

Leaderline comprised of one or two sharp 90 degree corners.

Straight

	
class pinout.components.leaderline.Straight(direction='hh', **kwargs)

	Bases: pinout.components.leaderline.Leaderline

Leaderline comprised of a single straight line.

Annotations

Annotation

	
class pinout.components.annotation.AnnotationLabel(content=None, body=None, leaderline=None, target=None, **kwargs)

	Bases: pinout.core.Group

Annotation style label.

An alternative method to ‘label’ a diagram, suitable for highlighting hardware details.

It is likely the body, leaderline, and target will all require customisation to best suit specific usages. Several methods of customisation are possible:

diagram-wide customisations:

	Over-ride dictionary settings in pinout.config.annotation

	Over-ride default annotation body, leaderline, and target classes

instance specific customisations:

	Supply a dictionary of arguments to body, content, leaderline, and target attributes. These override config.annotation settings

	provide an alternative component instance to body, content, leaderline, and target attributes.

	Parameters

	
	content ([type]) – [description]

	body ([type], optional) – [description], defaults to None

	leaderline ([type], optional) – [description], defaults to None

	target ([type], optional) – [description], defaults to None

Body

	
class pinout.components.annotation.Body(*args, corner_radius=0, **kwargs)

	Bases: pinout.core.Rect

Content

	
class pinout.components.annotation.Content(content, line_height=None, **kwargs)

	Bases: pinout.components.text.TextBlock

Content can be provided as a string, list, dictionary, or component instance. Strings are presented as a single line. Entries of a list present as lines of text. If a dictionary is provided it updates the default config settings and expects the ‘content’ attribute to be a list.

Leaderline

	
class pinout.components.annotation.Leaderline(direction='hh', **kwargs)

	Bases: pinout.components.leaderline.Curved

Target

	
class pinout.components.annotation.Target(*args, corner_radius=0, **kwargs)

	Bases: pinout.core.Rect

Legend

Legend

	
class pinout.components.legend.Legend(data, max_height=None, **kwargs)

	Auto generate a legend component

Note: pinout does not calculate text widths. A manually provided width may be required to ensure text remains enclosed within the legend.

	Parameters

	
	data ([type]) – [description]

	max_height ([type], optional) – [description], defaults to None

Swatch

	
class pinout.components.legend.Swatch(width=None, height=None, **kwargs)

	Graphical icon for display in LegendEntry

	Parameters

	
	width (int, optional) – Width of swatch, defaults to None

	height (int, optional) – Height of swatch, defaults to None

Entry

	
class pinout.components.legend.LegendEntry(content, width=None, height=None, swatch=None, **kwargs)

	Legend entry comprised of a swatch and single line of text.

The swatch attribute accepts either a dictionary of Swatch attributes or a Swatch instance. Swatch styling (ie filling with color) is done via CSS and should reference the LegendEntry class(es).

	Parameters

	
	content ([type]) – Text displayed in entry

	width (int, optional) – Width of entry, defaults to None

	height (int, optional) – height of entry, defaults to None

	swatch (dict or Swatch, optional) – Graphical icon included in entry, defaults to None

Text

TextBlock

	
class pinout.components.text.TextBlock(content, line_height=None, **kwargs)

	Bases: pinout.core.Group

Multiline text component.

The TextBlock accepts either a string or list for content. Each list entry is presented as a line of text. Where a string is provided, it is converted to a list by splitting on new-line characters (’\n’) and stripping whitespace from start and end of each line created.

Note

pinout cannot detect text character size! Consequently care should be taken to ensure text does not render outside expected boundaries.

	Parameters

	
	content (String or List) – Text to be displayed

	line_height (int, optional) – Distance between lines, defaults to None

Integrated circuits

pinout can generate simple integrated circuit (IC) graphics - Ideal for documenting stand-alone IC components.

DIP and QFP components can be utilised in a diagram in the same way as an image. However helper functions also exists for easy application of labels to these component.

Labelled QFP graphic

	
pinout.components.integrated_circuits.labelled_qfn(labels, length=160, label_start=(100, 20), label_pitch=(0, 30))

	Generate a QFP graphic with pin-labels applied.

	Parameters

	
	labels (list) – List of label data

	length (int, optional) – length of the IC sides (including legs), defaults to 160

	label_start (tuple, optional) – Offset of the first label from the first pin, defaults to (100, 20)

	label_pitch (tuple, optional) – Offest between each label row, defaults to (0, 30)

	Returns

	IC graphic with pinlabels applied

	Return type

	SVG markup

Labelled DIP graphic

	
pinout.components.integrated_circuits.labelled_dip(labels, width=100, height=160, label_start_x=100, label_pitch=(0, 30))

	Generate a DIP graphic with pin-labels applied.

	Parameters

	
	labels (list) – List of label data

	width (int, optional) – Width of IC (includes legs), defaults to 100

	height (int, optional) – Height of IC (includes inset), defaults to 160

	label_start_x (int, optional) – Offset in x-axis of first label from first pin, defaults to 100

	label_pitch (tuple, optional) – Offest between each label row, defaults to (0, 30)

	Returns

	IC graphic with pinlabels applied

	Return type

	SVG markup

Dual in-line package (DIP)

	
class pinout.components.integrated_circuits.DIP(pin_count, width, height, **kwargs)

	Bases: pinout.core.Group

Create a dual in-line package graphic

	Parameters

	
	pin_count (int) – Total number of pins on the integrated circuit

	width (int) – width of the graphic, including body and legs

	height (int) – height of the graphic, including body and legs

Dimensions can be modified to depict a variety of IC types, eg SOIC and TSOP.

	Parameters

	
	index (int) – Pin number (starts at 1)

	rotate (bool, optional) – If true, includes component rotation in the calculation, defaults to True

	Returns

	coordinates of the pin relative to the IC’s origin

	Return type

	namedtuple (x,y)

Quad flat package (QFP)

	
class pinout.components.integrated_circuits.QFP(pin_count, length, **kwargs)

	Bases: pinout.core.Group

Create a quad flat package graphic

	Parameters

	
	pin_count (int) – Total number of pins on the integrated circuit

	length (int) – length of the QFP sides

Dimensions can be modified to depict a variety of ‘quad’ IC types.

	Parameters

	
	index (int) – Pin number (starts at 1)

	rotate (bool, optional) – If true, includes component rotation in the calculation, defaults to True

	Returns

	coordinates of the pin relative to the IC’s origin

	Return type

	namedtuple (x,y)

Customisation

Documentation conveys not just information about its subject but also the personality of the owner. In the context of product/electronics documentation this ‘personality’ may be of the hardware itself, the creator of the hardware, or company that creates/distributes/sells the hardware.

Many pinout components have facility for customisation and easy integration into a diagram.

Stylesheet

The first stop for altering a diagram’s appearance is to edit its stylesheet. Presentation styles are all controlled here. If you are coming with some knowlege of CSS for web, be aware SVG has some different names for rules!

Component config

Altering the geometry of default components can be done by changing, or providing new, config values. See the Config section for more details

Building components

It is possible to build new components and integrate them into pinout.

Existing components are split into parts to allow easier overriding. Where a universal change is desired this maybe the best approach - until a guide is written for this, reviewing the package code (hosted on github [https://github.com/j0ono0/pinout]) is recommended.

Insertion of customised elements into some component instances is also possible and suitable where only small changes, or multiple variants, of a component are required in a single diagram.

PinLabel has ‘leaderline’ and ‘body’ attributes. These accept either a dictionary of values (see Config) or an instance that will be used in preference to the equivalent default component.

Annotation has ‘leaderline’, ‘body’, and ‘target’ atttributes that accept new component instances.

An example: The following code can be added to the quick_start script (‘pinout_diagram.py’) for quick and easy testing:

Import required modules and class at top of the script
from pinout.components import pinlabel
from pinout.core import Path

Create a new pin-label body class
and override the render function
class SkewLabelBody(pinlabel.Body):
 def render(self):
 skew = 3
 path_def = " ".join(
 [
 f"M {self.x + skew} {self.y -self.height/2}",
 f"l {self.width} 0",
 f"l {-skew*2} {self.height}",
 f"l {-self.width} 0" "Z",
]
)
 body = Path(path_definition=path_def, tag="label__body")
 return body.render()

Insert the following before the export statement
Add an instance of the custom pin-label body to the diagram
diagram.add(
 pinlabel.PinLabel(
 content="SKEWED",
 x=50,
 y=50,
 body=SkewLabelBody(70, 0, 100, 30),
)
)

Resources

Every pinout diagram has the fundamental requirement of an image to enhance with graphical additions. This prerequisite can be sizable barrier to creating the clearest diagram possible.

During pinout development several image create methods have been investigated. Community members have also reached out and generously provided feedback and further options to tryout.

Documented here is a list of what was tried during pinout development and some community input (some tried, some on my list to try out). The intent is to revisit all option and write-up some reviews and process notes.

	Export from KiCad

	Create from scratch
+ InkScape
+ Illustrator
+ With exported elements from KiCad

	Photograph

	https://github.com/yaqwsx/PcbDraw

	fritzing

Index

 A
 | B
 | C
 | D
 | E
 | G
 | I
 | L
 | P
 | Q
 | R
 | S
 | T

A

 	
 	add_stylesheet() (pinout.components.layout.Diagram method)

 	
 	Angled (class in pinout.components.leaderline)

 	AnnotationLabel (class in pinout.components.annotation)

B

 	
 	Base (class in pinout.components.pinlabel)

 	Body (class in pinout.components.annotation)

 	(class in pinout.components.pinlabel)

 	
 	bounding_coords() (pinout.core.SvgShape method)

 	bounding_rect() (pinout.core.SvgShape method)

C

 	
 	ClipPath (class in pinout.core)

 	
 	Content (class in pinout.components.annotation)

 	Curved (class in pinout.components.leaderline)

D

 	
 	Diagram (class in pinout.components.layout)

 	
 	DIP (class in pinout.components.integrated_circuits)

E

 	
 	end_points() (pinout.components.leaderline.Leaderline method)

G

 	
 	Group (class in pinout.core)

I

 	
 	Image (class in pinout.core)

L

 	
 	labelled_dip() (in module pinout.components.integrated_circuits)

 	labelled_qfn() (in module pinout.components.integrated_circuits)

 	Layout (class in pinout.core)

 	Leaderline (class in pinout.components.annotation)

 	(class in pinout.components.leaderline)

 	(class in pinout.components.pinlabel)

 	
 	Legend (class in pinout.components.legend)

 	LegendEntry (class in pinout.components.legend)

P

 	
 	Panel (class in pinout.components.layout)

 	Path (class in pinout.core)

 	
 	PinLabel (class in pinout.components.pinlabel)

 	PinLabelGroup (class in pinout.components.pinlabel)

Q

 	
 	QFP (class in pinout.components.integrated_circuits)

R

 	
 	Raw (class in pinout.core)

 	Rect (class in pinout.core)

 	
 	render() (pinout.components.layout.Diagram method)

 	(pinout.core.StyleSheet method)

 	render_children() (pinout.core.Layout method)

S

 	
 	Straight (class in pinout.components.leaderline)

 	StyleSheet (class in pinout.core)

 	
 	SvgShape (class in pinout.core)

 	Swatch (class in pinout.components.legend)

T

 	
 	Target (class in pinout.components.annotation)

 	
 	Text (class in pinout.core)

 	TextBlock (class in pinout.components.text)

 _static/demo_pinout_diagram.png
pinout

[l Analog [l Touch

[communication [Jfj Power

[l Ground Wrwm
| [

Demonstration diagram displaying pin-out
information of non-existent hardware.
Created with version 0.0.10

pinout is a Python application to assist

with documentation of electronic hardware.
Development is active with a goal to convert
a promising idea into a useful tool.

Current release:
pinout.readthedocs.io

_static/annotations_enhanced.png
Onboard LED

STM32L0
Single core Cortex-M0+

Additional 4 pin header

_static/annotations_simple.png
Micro
USB-C

Onboard LED

STM32L0
Single core Cortex-MO+

Additional 4 pin header

_static/huzzah32_pinout.png
[CRCRCNCRCN RN RN Y

00003000 9

T

_static/kicad_export.png
pinout example: KiCad as content source

Pinout content and positioning sourced direct from KiCad fie.

_static/file.png

_static/kicad_screenshot.png
TP3 ({test-point}}

Pinout Origin: Place at Image top left. .
TestPoint

o

LED)
1,

P2 ({test-point}}

estPoint

TP1. ({test—point)}

3V coin cell battery

_static/label_dimensions.png
H

height LBL

T\gap

‘ width

_images/quick_start_measurements_scale.png
scale = (-1, -1) scale = (1, -1)

o g

scale = (-1, 1) scale = (1, 1)

_images/quick_start_pinout_diagram.png
TOUCH

Pinout Quick start

Python tool Kit to assist with
documentation of electronic hardware.
More info at pinout.readthedocs.io

M Analog

[communication
W cround
Mcro

_images/quick_start_measurements_labels.png
]

label pitch = (0, 30)
scale = (-1, 1)

label start = (0, 60)
scale = (-1, 1)

label start =
scale =

label start = (0, 60)
scale = (1, 1)

_images/quick_start_measurements_pins.png
pin pm\é 0, 30)

I

gpio0 = (16,100) -, - -vec = (206, 100)

gpio3 = (65, 244) -

. reset = (155, 244)

pin pitch = (30, 0)

_static/annotations_custom.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 pinout

 		
 Install and Quickstart

 		
 Install

 		
 Quickstart

 		
 Tutorial

 		
 Import modules

 		
 Diagram setup

 		
 Hardware image

 		
 Measuring up

 		
 Add a single pin-label

 		
 Add Multiple pin-labels

 		
 Pin-label orientation

 		
 Title block

 		
 Legend

 		
 Export the diagram

 		
 Next steps

 		
 KiCad integration

 		
 Before you start

 		
 Create a KiCad footprint Library

 		
 Add an origin

 		
 Add pin-labels

 		
 Add an annotation

 		
 Add a textblock

 		
 Import KiCad data

 		
 Template layout

 		
 Link an image

 		
 Add labels and Annotations

 		
 Access text from KiCad

 		
 Export a diagram

 		
 Modules

 		
 Manager

 		
 Duplicate quick_start files

 		
 Export an SVG diagram

 		
 Export in other formats

 		
 Generate a cascading stylesheet

 		
 Config

 		
 Default values

 		
 Instance attributes

 		
 Core

 		
 Layout

 		
 StyleSheet

 		
 Raw

 		
 Group

 		
 ClipPath

 		
 SvgShape

 		
 Path

 		
 Text

 		
 Image

 		
 Layout

 		
 Diagram

 		
 Panel

 		
 Pin Labels

 		
 Base

 		
 PinLabel

 		
 Body

 		
 Leaderline

 		
 PinLabelGroup

 		
 Leaderlines

 		
 Leaderline

 		
 Curved

 		
 Angled

 		
 Straight

 		
 Annotations

 		
 Annotation

 		
 Body

 		
 Content

 		
 Leaderline

 		
 Target

 		
 Legend

 		
 Legend

 		
 Swatch

 		
 Entry

 		
 Text

 		
 TextBlock

 		
 Integrated circuits

 		
 Labelled QFP graphic

 		
 Labelled DIP graphic

 		
 Dual in-line package (DIP)

 		
 Quad flat package (QFP)

 		
 Customisation

 		
 Stylesheet

 		
 Component config

 		
 Building components

 		
 Resources

_images/kicad_export.png
pinout example: KiCad as content source

Pinout content and positioning sourced direct from KiCad fie.

_static/quick_start_measurements_labels.png
]

label pitch = (0, 30)
scale = (-1, 1)

label start = (0, 60)
scale = (-1, 1)

label start =
scale =

label start = (0, 60)
scale = (1, 1)

_images/kicad_screenshot.png
TP3 ({test-point}}

Pinout Origin: Place at Image top left. .
TestPoint

o

LED)
1,

P2 ({test-point}}

estPoint

TP1. ({test—point)}

3V coin cell battery

_static/quick_start_measurements_pins.png
pin pm\é 0, 30)

I

gpio0 = (16,100) -, - -vec = (206, 100)

gpio3 = (65, 244) -

. reset = (155, 244)

pin pitch = (30, 0)

_static/plus.png

_images/demo_pinout_diagram.png
pinout

[l Analog [l Touch

[communication [Jfj Power

[l Ground Wrwm
| [

Demonstration diagram displaying pin-out
information of non-existent hardware.
Created with version 0.0.10

pinout is a Python application to assist

with documentation of electronic hardware.
Development is active with a goal to convert
a promising idea into a useful tool.

Current release:
pinout.readthedocs.io

_static/quick_start_measurements_scale.png
scale = (-1, -1) scale = (1, -1)

o g

scale = (-1, 1) scale = (1, 1)

_static/quick_start_pinout_diagram.png
TOUCH

Pinout Quick start

Python tool Kit to assist with
documentation of electronic hardware.
More info at pinout.readthedocs.io

M Analog

[communication
W cround
Mcro

