pinout
Release 0.0.20

John Newall

Mar 23, 2022

CONTENTS:

1 Install and Quickstart 3
L1 Install . . .o e e e e 3
1.2 Quickstart e e e e e e e e 4
2 Tutorial 7
2.1 Importmodules. L e e 7
22 Diagram Setup e e e e 8
2.3 Hardware image i e e e e 8
24 MeasurinZ UP . . v v v v v o e 8
2.5 Addasingle pin-label L Lo e e 10
2.6 Add Multiple pin-labels e 10
2.7 Pin-label orientation L. oL e e e e e e e e 11
2.8 Titleblock 12
2.9 Legend e e e e e e e e e 12
2.10 Exportthe diagram L e e e e e e e e e e e 13
201 NEXUSIEPS .« ¢ v v v e 13
3 KiCad integration 15
3.1 Beforeyoustart.o e e e e e e e e e e e e e e 15
3.2 Create a KiCad footprint Library 16
33 Addanorigino e e e e e e e e 17
34 Addpin-labelso e e 17
3.5 Addanannotationl e e e e e e 17
3.6 Addatextblock e e 17
37 ImportKiCaddata e e 18
3.8 Templatelayout. oL e 18
39 Linkanimage e 19
3.10 Addlabels and Annotations i e e e e e e e e e e e e e e e 19
3.11 Accesstextfrom KiCad e 19
312 Exportadiagram L e e e e e e e e e e e e e e e 19
4 Modules 21
4.1 Managert e 21
42 Config . . . o e e e e e e e 22
43 COTC . . v e e e e e e 25
4.4 Layoul e e e e e e e 25
45 PinLabels e 25
4.6 Leaderlines e e e e 25
47 ANNnOtationS e e e e e e e e e e e e e e 25
4.8 Legend e e e e 25

4.9 TeXt . . v e e e e
4.10 Integrated circuits

5 Customisation
5.1 Stylesheet o L e e e
5.2 Component config i i i e e e e e e e e e e e e e
5.3 Building components

6 Resources

7 Indices and tables

27
27
27
27

29

31

pinout, Release 0.0.20

SVG diagram creation from Python code - pinout provides an easy method to create pin-out diagrams for electronic

hardware.

Status
LED

USB-C
port

pinout

[2nalog [Touch
B communication [Power
l Ground | R

B crio

Demanstration diagram displaying pin-out
information of non-existent hardware.
Created with version 0.0.10

pinout is a Python application to assist

with documentation of electronic hardware.
Development is active with a goal to convert
a promising idea into a useful tool.

Current release:
pinout.readthedocs.io

CONTENTS:

pinout, Release 0.0.20

2 CONTENTS:

CHAPTER
ONE

INSTALL AND QUICKSTART

1.1 Install

Using a virtual environment is recommended; Start by installing the pinout package from PyPi:

pip install pinout

Or upgrade to the latest version
pip install --upgrade pinout

pinout exports diagrams in SVG format and can be used with with no further package installations. With the additional
installation of CairoSVG, diagrams can also be exported in PNG, PDF, and PS formats:

pip install cairosvg

Warning: CairoSVG has non-Python dependencies that will require installing if not present. Installation varies
depending on platform and may feel like quite a journey for non-technical users. Information regarding installation
requirements can be found in the CairoSVG and Cairo Graphics Library websites.

For Windows users installing GTK3 via MSYS2 may be the most reliable method to install all requirements (Don’t
forget to add the correct GTK bin folder to the system PATH environmental variable!)

https://cairosvg.org/documentation/
https://www.cairographics.org/download/
https://www.gtk.org/docs/installations/windows/

pinout, Release 0.0.20

1.2 Quickstart

Pinout Quick start M Analog B rouch
Python tool kit to assist with . Communication .Power
documentation of electronic hardware. . Ground . PWM

More info at pinout.readthedocs.io

Ml crio

This guide makes use of a hardware image, stylesheet, data file, and a Python script. Sample files are included with the
package and can be duplicated for your use. Open a command line (with enabled virtual environment if you are using
one) in the location you plan to work and enter the following

Note: Depending on your operating system the command to invoke Python may differ. This guide uses Windows
default method. Exchanging ‘py’ for ‘python’ or similar may be required for examples to work on other systems.

py -m pinout.manager --duplicate quick_start

expected output:

>>> data.py duplicated.

>>> hardware.png duplicated.

>>> pinout_diagram.py duplicated.
>>> styles.css duplicated.

H R R R W

Generating the final SVG graphic is done from the command line:

py -m pinout.manager --export pinout_diagram.py diagram.svg

If everything is correctly configured the newly created file ‘diagram.svg’ can be viewed in a browser and should look
identical to the diagram pictured here.

Warning: Not all SVG viewers are build equal! pinout uses SVG format ‘under-the-hood’ and can also output
diagrams in this format. SVG is well supported by modern browsers and applications that specialize in rendering
SVG such as InkScape. If a pinout diagram displays unexpected results (eg. mis-aligned text) cross-check by
viewing the diagram in an up-to-date browser (eg. Firefox or Chrome) as an initial trouble-shooting step.

4 Chapter 1. Install and Quickstart

pinout, Release 0.0.20

Once you have installed the pinout package explore its main features in the 7utorial.

1.2. Quickstart 5

pinout, Release 0.0.20

6 Chapter 1. Install and Quickstart

CHAPTER
TWO

TUTORIAL

This tutorial walks through the main features available in pinout. If you have not installed pinout already please read
the Install and Quickstart section. This tutorial duplicates code from pinout_diagram.py. To access a copy of this file
and other resources required to complete this tutorial see Quickstart.

Pinout Quick start B Analog B rouch
python tool kit to assist with I communication .PDWET
documentation of electronic hardware. . Ground .PWM

More info at pinout.readthedocs.io

Ml crio

Fig. 1: The finished diagram from this tutorial.

2.1 Import modules

Start by importing pinout modules required to create the sample diagram. For this tutorial the diagram data has been
stored in a separate file which is also imported here:

from pinout.core import Group, Image

from pinout.components.layout import Diagram_2Rows

from pinout.components.pinlabel import PinLabelGroup, PinLabel
from pinout.components.text import TextBlock

(continues on next page)

pinout, Release 0.0.20

(continued from previous page)

from pinout.components import leaderline as lline
from pinout.components.legend import Legend

Import data for the diagram
import data

2.2 Diagram setup

The Diagram_2Rows class creates a blank diagram instance featuring two panels to hold further components and make
up the pinout diagram. The instance is named ‘diagram’ here as this is the default instance name pinout.manager looks
for when exporting the final graphic. Presentation styles are controlled via a cascading style-sheet, also added to the
diagram here:

Create a new diagram

The Diagram_2Rows class provides 2 panels,

'panel_01' and 'panel_02', to insert components into.
diagram = Diagram_2Rows(1024, 576, 440, "diagram")

Add a stylesheet
diagram.add_stylesheet("styles.css", embed=True)

Components can be grouped independently from a panel. This aids with fine-tuning of a layout as a group of compo-
nents can be moved as a single unit:

Create a group to hold the actual diagram components.
graphic = diagram.panel_01.add(Group (400, 42))

2.3 Hardware image

An image that requires pinout information is obviously required and added with the Image class. Width and height
arguments are optional. If omitted the pixel dimensions are automatically detected and used. ‘x’ and ‘y’ attributes can
also be supplied to position the top-left of the image to more suitable coordinates:

Add and embed an image
hardware = graphic.add(Image("hardware.png"”, embed=True))

2.4 Measuring up

Key coordinates on the image need to be documented for related components to align correctly. It is a good idea to
undertake measuring as a distinct step and usually quicker than estimating with trial-and-error later on. Measurements
are pixel dimensions from the top, left corner (with an exception - see following note on ‘pin pitch’) :

These coordinates could be used ‘as is’ later on but recording them with the Image class provides a clear association
plus coordinates are transformed automatically to remain correctly positioned if the image’s x, y, width, or height are
adjusted:

8 Chapter 2. Tutorial

pinout, Release 0.0.20

pin pitch = {0, 30)

........ gpiod = (16,100) ----, ----vcc = (206, 100)
Lo a

gpio3 = (65, 244)
JSEEE EER reset = (155, 244)

‘

pin pitch = (30, 0) B oy
==y g

Measure and record key location with the hardware Image instance
hardware.add_coord("gpio®", 16, 100)

hardware.add_coord("'gpio3", 65, 244)

hardware.add_coord("reset", 155, 244)

hardware.add_coord("vcc", 206, 100)

Other (x,y) pairs can also be stored here
hardware.add_coord("pin_pitch_v", 0, 30)
hardware.add_coord("pin_pitch_h", 30, 0)

Note: Arbitary (x,y) data can also be recorded with the image. The pin-header pitch has been recorded in this manner.
Transformed values can then be automatically calculated if the image’s width or height are altered.

pinout provides great flexibility when positioning pin-labels. Key details to note:
* ‘x’ and ‘y’ values are relative to hardware coordinates.
* label_pitch is an (x,y) offset between each pin-label in a PinLabelGroup
* scale is used to ‘flip’ labels. Negative values may yield unexpected results

e ‘x’ and ‘y’ positions the entire label or row component, including a leaderline. A pin-label’s body can be posi-
tioned in addition to the component positioning.

label pitch = (0, 30) label start = {0, 60) label start = (0, 60)
scale = (-1, 1) scale = (-1, 1) scale = (1, 1)
Ot e

label body: x=117, y=30
label start = (110, 30) scale = (-1, 1)
scale = (-1, 1) i

2.4. Measuring up 9

pinout, Release 0.0.20

2.5 Add a single pin-label

In some instances adding pins individually might be appropriate. This pin is being added to the ‘graphic’ group - the
same component that the image is in - and references coordinates filed with the image. Also demonstrated on this pin
are some customisations of the pin-label’s body and leaderline:

Create a single pin label
graphic.add(
PinLabel(
content="RESET",
x=hardware.coord("reset").x,
y=hardware.coord("reset").y,

tag="pur",
body={"x": 117, "y": 30},
leaderline={"direction": "vh"},

2.6 Add Multiple pin-labels

Where pins are arranged in ‘headers’ (a line of evenly spaced pins) the PinLabelGroup class can be used to automate
many of the geometry calculations required to place individual pin-labels.

* X, y: Coordinates of the first pin in the header.

 pin_pitch: Distance between each pin of the header. (0, 30) steps Opx right and 30px down for each pin. TIP:
(30, 0) creates a horizontal header.

* label_start: Offset of the first label from the first pin, note that negative x values here may produce unexpected
results. pin-label groups should be flipped with scale instead (more explaination later).

* label_pitch: Distance between each row of labels.

* labels: Label data. See data.py for examples

Create pinlabels on the right header
graphic.add(

PinLabelGroup(
x=hardware.coord("vcc") .x,
y=hardware.coord("vcc").y,
pin_pitch=(0, 30),
label_start=(60, 0),
label_pitch=(0, 0),
labels=data.right_header,

10 Chapter 2. Tutorial

pinout, Release 0.0.20

2.7 Pin-label orientation

scale = (-1, -1) scale = (1, -1)

L

scale = (-1, 1) scale = (1, 1)

SVG format allows ‘flipping’ or ‘mirroring’ elements by scaling them with a negative value eg. scale=(-1, 1) flips a
component around a vertical axis. _pinout_ makes use of this feature, a scale attribute can be supplied to components
to flip their layout. This can take some getting use to but provides a concise method of control. The following pin-label
groups are scaled to orient in the opposite direction.

Create pinlabels on the left header
graphic.add(

PinLabelGroup(
x=hardware.coord("gpio0").x,
y=hardware.coord("gpio0").y,
pin_pitch=(0, 30),
label_start=(60, 0),
label_pitch=(0, 0),
scale=(-1, 1),
labels=data.left_header,

)

Create pinlabels on the lower header
graphic.add(

PinLabelGroup(
x=hardware.coord(''gpio3").x,
y=hardware.coord("gpio3").y,
scale=(-1, 1),
pin_pitch=(30, 0),
label_start=(110, 30),
label_pitch=(30, 30),
labels=data.lower_header,
leaderline=1line.Curved(direction="vh"),

2.7. Pin-label orientation 11

pinout, Release 0.0.20

2.8 Title block

Adding a title and supporting notes can help readers quickly place a diagram in context and summarise important
points:

Create a title and a text-block
title_block = diagram.panel_02.add(
TextBlock(
data.title,
x=20,
y=30,
line_height=18,
tag="panel title_block",
)
)
diagram.panel_02.add(
TextBlock(
data.description.split("\n"),
x=20,
y=60,
width=title_block.width,
height=diagram.panel_02.height - title_block.height,
line_height=18,
tag=""panel text_block",

2.9 Legend

Adding a legend is easy as a dedicated component exists in _pinout_. The component flows into multiple columns if a
‘max_height’ is supplied:

Create a legend
legend = diagram.panel_02.add(
Legend(
data.legend,
x=340,
y=8,
max_height=132,

12 Chapter 2. Tutorial

pinout, Release 0.0.20

2.10 Export the diagram

With all the required files present, the diagram can be exported via command-line:

py -m pinout.manager --export pinout_diagram.py diagram.svg

expected output:
> 'diagram.svg' exported successfully.

The exported file is SVG format. When viewed in a web browser it should match the finished diagram shown here.
This format is excellent for high quality printing but still an effecient size for web-based usage.

Pinout Quick start M Analog B ouch
Python tool kit to assist with I communication .PDWET
documentation of electronic hardware. . Ground . PWM

More info at pinout.readthedocs.io

Ml crio

Fig. 2: The finished diagram from this tutorial.

2.11 Next steps

This guide has glossed over many features, attribute, and configurations available. Experimenting with changing values
and re-exporting the diagram will quickly reveal their purpose. All function are documented in the Modules section.

Depending on you intended usage, linking (instead of embedding) the image might be desirable. Set embed=False
when adding an image to achieve this outcome. Nofe: When linking, URLs are relative to the exported diagram file.
When embedding these URLs are relative to the current working directory (the directory you run the script from).

TIP: Embedding the image and stylesheet allows the SVG display correctly in InkScape. This might be an appealing
work-flow option for encorporating the diagram into other media or exporting in alternative formats.

More feature-rich examples are available in the samples folder of the pinout github repository.

2.10. Export the diagram 13

https://github.com/j0ono0/pinout

pinout, Release 0.0.20

14 Chapter 2. Tutorial

CHAPTER
THREE

KICAD INTEGRATION

pinout provides integration with KiCad (version 5 and 6) allowing users to author pinout content directly onto a PCB
design. This allows a better separation of layout and content where KiCad can become a single content source for a
diagram template.

TP3 {{test—paint}}
Plnout Origin: Place at Image top left.
TestPoint
al

TP2 {{test—point})

TestPalnt

TP1 ({test—point}}

3V coin cell battery

3.1 Before you start

Create or obtain (see following note) a KiCad project! This project must include a PCB design which will be enhanced
with additional pinout information.

Ensure pinout is installed. For more information regarding this step please refer to Install and quickstart

Optionally, duplicate the pinout config file. Some KiCad library settings can be customised from this file - Most
usefully, the layer that library footprints appear on can be changed:

py -m pinout.manager -d config

Note: Sample files that demonstrate KiCad (version 6) integration are included with pinout. Once duplicated and
unzipped, running the python script will export an example diagram:

15

pinout, Release 0.0.20

Duplicate zipped folder with KiCad 6 project and pinout files
py -m pinout.manager -d kicad

Expected output:
>>> pinout_kicad_example.zip duplicated.

Export pinout diagram from unzipped folder
>>> py -m pinout.manager -e pinout_diagram.py diagram.svg -0

Expected output:
>>> 'diagram.svg' exported successfully.

3.2 Create a KiCad footprint Library

pinout generates its KiCad footprint library from the command line py -m pinout.manager <destination
folder> <config file> --version <kicad version>. ‘config file’ and ‘version’ are optional. If omitted the
version defaults to ‘6’ and default config settings are used:

#Example: KiCad 6, saving into the current directory
py -m pinout.manager --kicad_lib .

#Example: KiCad 6, saving into the current directory and referencing a config file
py -m pinout.manager --kicad_lib . config.py

#Example: KiCad 5, saving into the relative directory named 'lib’
py -m pinout.manager --kicad_lib ./1ib -v 5

Expected output:
>>> pinout footprint library for KiCad created successfully.

A folder named pinout.pretty will now be present at the location referenced in the command. This folder can be added
as a footprint library in your KiCad project.

Note: KiCad 6: Footprints are on User.I layer by default.
KiCad 5: Footprints are on Ecol.User layer by default.

Warning: KiCad 6 allows users to assign an alias to layer names. Only use KiCad’s default layer names when
generating a pinout library.

The pinout footprints can now be added to KiCad like any other footprint library and added to an existing design in the
PCB Editor.

16 Chapter 3. KiCad integration

pinout, Release 0.0.20

3.3 Add an origin

The hardware image used in a diagram must be aligned to KiCad’s coordinate system for pinout to successfully align
components. This can be done by placing an Origin footprint at a corrosponding location in KiCad. The origin footprint
marks where an image’s top-left corner will be positioned.

3.4 Add pin-labels

1. Select the PinLabel footprint from the Choose Footprint dialogue.
2. Place the footprint at the pin location

3. Move the Value text to the desired label location

4. Edit the text value to reflect label content and styling.

Multiple labels can be documented for a single pin by adding additional text { {tag}} pairs to the Value field. For example
this become a row of three labels:

GPIO1 {{gpio}} ADC {{analog}} TOUCH {{touch}}

By editing the footprint two more fields, that are hidden by default, can be viewed and edited. The Reference designator
documents the footprints purpose and can be altered without affecting pinout’s functions. The additional field is used
to document pin-label attributes.

Currently only the pin-label leaderline attribute is supported. It can be changed to suit the desired layout and reflects
start/end leaderline directions. Valid values are:

¢ hh: horizontal - horizontal

¢ vh: vertical - horizontal

3.5 Add an annotation

Annotations can be added by the same method as pin-labels. 1. Select the Annotation footprint from the Choose
Footprint dialogue. 2. Place the footprint at the location to be annotated 3. Move the Value text to the desired label
location 4. Edit the text value to reflect label content and styling.

Tagging the annotation is done with the same ‘moustache’ style tag {{tag}}. The tag text is applied to the final annotation
as a css class. Further styling can then be applied via the CSS stylesheet.

By editing the annotation footprint other fields can be accessed and altered - with the same features and limitations -
as the PinLabel footprint.

3.6 Add a textblock

A diagram is likely to require text content that is independent from the pinout diagram itself - for instance titles and
explainatory notes. To assist with this pinout provides the facility to import ‘Text items’ from KiCad.

KiCad’s Text item tool is the ideal interface to authoring blocks of text. This tool cannot be used within a footprint but
pinout collates all Text items that include a moustache-style tag {{ tag-content }} in them. A dictionary is then
returned for use within a pinout script. For example:

3.3. Add an origin 17

pinout, Release 0.0.20

import kicad pcb data into pinout
kdata = k2p.PinoutParser("kicad6_test.kicad_pcb", dpi=72)

Retrieve 'Text item' content from KiCad as a dictionary
text = kdata.gr_text()

Use Text item content to populate a TextBlock
diagram.add(TextBlock(text["txt_tag_01"], tag="txt_tag_01", x=20, y=30))

Note: Text content must be valid SVG markup. For example the ampersand character “&”” must be encoded correctly
“&”. Valid tags can also be included and will be rendered as part of the SVG. For example using a <tspan> tag
provides scope for multiple styles within a single block of text:

{{pinout_title}}<tspan class="hl">pinout example: KiCad as content source</tspan>
Pinout content & positioning sourced.
—direct from KiCad file.

.hl styles in the css file are applied to the text.

3.7 Import KiCad data

With pinout content documented in KiCad it can now be imported into a pinout Python script. The following code
snippets are directly from the sample files mentioned at the start of this article. Code for an entire working sample will
be duplicated here but descriptions will focus on relevant aspects only.

Both Kicad versions 5 and 6 use the same module. With the module imported a link to the kicad_pcb file can be
established:

from pinout.core import Group, Image

from pinout.components.layout import Diagram_2Rows
from pinout.components.text import TextBlock

from pinout import kicad2pinout as k2p

Import KiCad data
kdata = k2p.PinoutParser("kicad_6_pcb/kicad_6_pcb.kicad_pcb", dpi=72, version=6)

3.8 Template layout

Whilst labelling can be done in KiCad the overall diagram layout must still be addressed. See the Tuforial for more
details on this:

Create diagram layout
diagram = Diagram_2Rows(900, 575, 500, tag="diagram'")
diagram.add_stylesheet("styles.css")

Using a 'group' component for easy alignment of all sub-components

(continues on next page)

18 Chapter 3. KiCad integration

pinout, Release 0.0.20

(continued from previous page)

graphic = diagram.panel_01.add(Group (300, 65))

Add an image that corrosponds to the KiCad PCB.
img = graphic.add(Image(src="pcb_graphic.svg", width=300, height=300))

3.9 Link an image

Coordinate data from KiCad must be transformed and aligned with the supplied image. This not only translates co-
ordinates to align with the origin footprint but also scales and rotates to remain aligned with an image that has been
transformed in pinout:

KiCad coordinates will be transformed to match the linked image.
kdata.link_image(img)

3.10 Add labels and Annotations

With KiCad data successfully imported and associated with the image it will enhance, adding pin-labels and annotations
is easy:

Add pin-labels and annotations to the 'graphic' group
kdata.add_pinlabels(graphic)
kdata.add_annotations(graphic)

3.11 Access text from KiCad

To better separate content and layout pinout can also import text content from KiCad. pinout scripts can become reuable
templates with minimal changes. All text-items that include a ‘moustache’ style tag are collated into a dict for access
in the script. In this example text is used to fill a title block:

Text from KiCad can be accessed as a dict
textblocks = kdata.gr_text()
diagram.panel_02.add(TextBlock(textblocks["pinout_title"], x=20, y=30))

3.12 Export a diagram

The diagram can now be exported in the normal way. For the example script this should go smoothly with predictable
results. For other kicad file that include more/different label and tags a revised CSS file needs to be created. pinout
can provide a reasonable starting point with its auto-styling feature. Don’t forget to update ‘add_stylesheet’ in the
script!

OPTIONAL EXTRA: Auto generate styles
>>> py -m pinout.manager --css pinout_diagram.py autostyles.css -o

(continues on next page)

3.9. Link an image 19

pinout, Release 0.0.20

(continued from previous page)

Export diagram as SVG:
>>> py -m pinout.manager -e pinout_diagram.py diagram.svg -o

3V coin cell battery

pinout example: KiCad as content source

Pinout content and positioning sourced direct from KiCad file.

20 Chapter 3. KiCad integration

CHAPTER
FOUR

MODULES

4.1 Manager

The manager module provides various functions to assist pinout create diagrams. For users, Manager is primarily
accessed via the command-line for the following.

4.1.1 Duplicate quick_start files

A fast way to get started exploring pinout is by trying out the quick_start diagram that is featured in the tutorial.
Required files can be duplicated from the pinout package via command line:

py -m pinout.manager --duplicate quick_start

expected output:

>>> data.py duplicated.

>>> hardware.png duplicated.

>>> pinout_diagram.py duplicated.
>>> styles.css duplicated.

R SR S S

-d works as a short-hand version of —duplicate

4.1.2 Export an SVG diagram

Once a diagram has been documented it can be exported to SVG format via the command-line. Two arguments must
be supplied. A path to the diagram python script and destination path including filename:

>>> py pinout.manager --export pinout_diagram.py my_diagram.svg

expected response:
'my_diagram.svg' exported successfully.

Example where pinout.Diagram instance is named 'board_x_diagram'
>>> py pinout.manager --export pinout_diagram.py my_diagram.svg board_x_diagram

Details to note:
* —export can be expressed as a single letter -e
* An —overwrite (-0) can also be included to overwrite an existing file

* if the instance name is not ‘diagram’ the alternative name can be added as as third argument

21

pinout, Release 0.0.20

4.1.3 Export in other formats

With the addition of CairoSVG pinout is able to export to PNG, PDF, and PS formats. Installation is done via pip:

pip install cairosvg

Note: CairoSVG has it’s own (non-Python) dependencies. See Install and Quickstart for more details.

Once these dependencies have been installed replace the filename suffix to export in the desired format:

Export as png
>>> py pinout.manager --export pinout_diagram.py my_diagram.png

Export as pdf
>>> py pinout.manager --export pinout_diagram.py my_diagram.pdf

Export as ps
>>> py pinout.manager --export pinout_diagram.py my_diagram.ps

4.1.4 Generate a cascading stylesheet

Provided with a diagram file, the manager can extract components and tags, then export a stylesheet based on this data
to assist with styling. The resulting stylesheet can then be further edited or a second stylesheet created to supplement
the default styles:

>>> py pinout.manager --css pinout_diagram.py diagram_styles.css

expected response:
Stylesheet created: 'diagram_styles.css'

As with exporting an SVG, the -0 flag can be used to overwrite and existing file. Note, there is no short-hand for the
-css flag.

4.2 Config

Components with a graphical representation have a variety of configuration attributes that affect their appearance.
These attributes can be modified at several location whilst scripting.

4.2.1 Default values

These attributes are stored as Python dictionaries in the config module.

A complete set of all default configurations can be duplicated for reference from the command line:

py -m pinout.manager --duplicate config

expected response:
>>> config.py duplicated.

Amending the default configurations can be done by replacing or updating any of the dictionaries with plain Python:

22 Chapter 4. Modules

pinout, Release 0.0.20

from pinout import config
config.pinlabel["body"].update({"width": 120})

All pin-label bodies will now default to 120 wide

4.2.2 Instance attributes

PinLabels and Annotations accept a dictionary of configurations for some attributes. These values are used to update
the default settings for that single instance. This is ideal when small alterations are required for a low number items:

from pinout.core import Diagram
from pinout.components.pinlabel import PinLabel

diagram = Diagram(1200, 675, "pinout")
diagram.add(
PinLabel(
x=30,
y=30,
tag="sm-label",
body={"width": 40},

4.2. Config 23

pinout, Release 0.0.20

24 Chapter 4. Modules

pinout, Release 0.0.20

4.3 Core

4.3.1 Layout
4.3.2 StyleSheet
4.3.3 Raw

4.3.4 Group
4.3.5 ClipPath
4.3.6 SvgShape
4.3.7 Path

4.3.8 Text

4.3.9 Image
4.4 Layout

4.4.1 Diagram

4.4.2 Panel

4.5 Pin Labels

4.5.1 Base
4.5.2 PinLabel
4.5.3 Body
4.5.4 Leaderline

4.5.5 PinLabelGroup

4.6 Leaderlines

4.6.1 Leaderline
4.6.2 Curved
4.6.3 Angled

4.6.4 Straight

437 CRfinotations

4.7.1 Annotation

25

pinout, Release 0.0.20

DIP and QFP components can be utilised in a diagram in the same way as an image. However helper functions also
exists for easy application of labels to these component.

4.10.1 Labelled QFP graphic
4.10.2 Labelled DIP graphic
4.10.3 Dual in-line package (DIP)

4.10.4 Quad flat package (QFP)

26 Chapter 4. Modules

CHAPTER
FIVE

CUSTOMISATION

Documentation conveys not just information about its subject but also the personality of the owner. In the context
of product/electronics documentation this ‘personality’ may be of the hardware itself, the creator of the hardware, or
company that creates/distributes/sells the hardware.

Many pinout components have facility for customisation and easy integration into a diagram.

5.1 Stylesheet

The first stop for altering a diagram’s appearance is to edit its stylesheet. Presentation styles are all controlled here. If
you are coming with some knowlege of CSS for web, be aware SVG has some different names for rules!

5.2 Component config

Altering the geometry of default components can be done by changing, or providing new, config values. See the Config
section for more details

5.3 Building components

It is possible to build new components and integrate them into pinout.

Existing components are split into parts to allow easier overriding. Where a universal change is desired this maybe the
best approach - until a guide is written for this, reviewing the package code (hosted on github) is recommended.

Insertion of customised elements into some component instances is also possible and suitable where only small changes,
or multiple variants, of a component are required in a single diagram.

PinLabel has ‘leaderline’ and ‘body’ attributes. These accept either a dictionary of values (see Config) or an instance
that will be used in preference to the equivalent default component.

Annotation has ‘leaderline’, ‘body’, and ‘target’ atttributes that accept new component instances.

An example: The following code can be added to the quick_start script (‘pinout_diagram.py’) for quick and easy
testing:

Import required modules and class at top of the script
from pinout.components import pinlabel
from pinout.core import Path

(continues on next page)

27

https://github.com/j0ono0/pinout

pinout, Release 0.0.20

(continued from previous page)

Create a new pin-label body class
and override the render function
class SkewLabelBody(pinlabel.Body) :
def render(self):
skew = 3
path_def = " ".join(
[
f"M {self.x + skew} {self.y -self.height/2}",
£f"1 {self.width} 0",
£f"1 {-skew*2} {self.height}",
£f"1 {-self.width} 0" "Z",
]
)
body = Path(path_definition=path_def, tag="label__body")
return body.render ()

Insert the following before the export statement
Add an instance of the custom pin-label body to the diagram
diagram.add(
pinlabel.PinLabel(
content="SKEWED",

x=50,
y=50,
body=SkewLabelBody (70, 0, 100, 30),
)
D)
28 Chapter 5. Customisation

CHAPTER
SIX

RESOURCES

Every pinout diagram has the fundamental requirement of an image to enhance with graphical additions. This prereq-
uisite can be sizable barrier to creating the clearest diagram possible.

During pinout development several image create methods have been investigated. Community members have also
reached out and generously provided feedback and further options to tryout.

Documented here is a list of what was tried during pinout development and some community input (some tried, some
on my list to try out). The intent is to revisit all option and write-up some reviews and process notes.

» Export from KiCad

* Create from scratch + InkScape + Illustrator + With exported elements from KiCad
* Photograph

* https://github.com/yaqwsx/PcbDraw

* fritzing

29

https://github.com/yaqwsx/PcbDraw

pinout, Release 0.0.20

30 Chapter 6. Resources

CHAPTER
SEVEN

INDICES AND TABLES

* genindex
* modindex

¢ search

31

	Install and Quickstart
	Install
	Quickstart

	Tutorial
	Import modules
	Diagram setup
	Hardware image
	Measuring up
	Add a single pin-label
	Add Multiple pin-labels
	Pin-label orientation
	Title block
	Legend
	Export the diagram
	Next steps

	KiCad integration
	Before you start
	Create a KiCad footprint Library
	Add an origin
	Add pin-labels
	Add an annotation
	Add a textblock
	Import KiCad data
	Template layout
	Link an image
	Add labels and Annotations
	Access text from KiCad
	Export a diagram

	Modules
	Manager
	Duplicate quick_start files
	Export an SVG diagram
	Export in other formats
	Generate a cascading stylesheet

	Config
	Default values
	Instance attributes

	Core
	Layout
	StyleSheet
	Raw
	Group
	ClipPath
	SvgShape
	Path
	Text
	Image

	Layout
	Diagram
	Panel

	Pin Labels
	Base
	PinLabel
	Body
	Leaderline
	PinLabelGroup

	Leaderlines
	Leaderline
	Curved
	Angled
	Straight

	Annotations
	Annotation
	Body
	Content
	Leaderline
	Target

	Legend
	Legend
	Swatch
	Entry

	Text
	TextBlock

	Integrated circuits
	Labelled QFP graphic
	Labelled DIP graphic
	Dual in-line package (DIP)
	Quad flat package (QFP)

	Customisation
	Stylesheet
	Component config
	Building components

	Resources
	Indices and tables

